If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+15x-45=0
a = 6; b = 15; c = -45;
Δ = b2-4ac
Δ = 152-4·6·(-45)
Δ = 1305
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1305}=\sqrt{9*145}=\sqrt{9}*\sqrt{145}=3\sqrt{145}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-3\sqrt{145}}{2*6}=\frac{-15-3\sqrt{145}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+3\sqrt{145}}{2*6}=\frac{-15+3\sqrt{145}}{12} $
| -57=-6(4+5r)-3 | | 3−2/3(x−8)=5 | | 3−23(x−8)=5 | | 6(x+5)=2-2(x-3) | | 2x²-40x=0 | | 3x2–6x+20=0 | | 2^2x+1=0.5 | | 4y-9=-8y-1 | | 12x=7x+5x | | -x-12=2x+18 | | X=24y12 | | 3x+40+11x-60+4x=180 | | 1/12+1/15=1/x=1/6 | | 16x−2=15x−3 | | -0,03x²+3x-48=0 | | 7/8+m=43/4 | | 4. 2x+6=4x-6 | | 2x2+4x–21=0 | | X2-3√3x-12=0 | | x2+75=(2x)2 | | 12+15+x=6 | | x^2-275-14=0 | | 5+0.5(14b-8)=-6 | | 7z-4z=21 | | w+3.375=1.16 | | 0=-2t^2+40t-72 | | -2.25=r-4/5 | | 3x3+-4x2+-4x=0 | | 16x-96=32 | | x+0.6x=12 | | -22d-15=8 | | 0.6x-5=0.1x=2 |